
Subject: Re: Network virtualization/isolation
Posted by Herbert Poetzl on Wed, 29 Nov 2006 05:54:32 GMT
View Forum Message <> Reply to Message

On Tue, Nov 28, 2006 at 02:50:03PM -0700, Eric W. Biederman wrote:
> Daniel Lezcano <dlezcano@fr.ibm.com> writes:
>
> > Eric W. Biederman wrote:
> >> I do not want to get into a big debate on the merits of various
> >> techniques at this time. We seem to be in basic agreement
> >> about what we are talking about.
> >>
> >> There is one thing I think we can all agree upon.
> >> - Everything except isolation at the network device/L2 layer, does not
> >> allow guests to have the full power of the linux networking stack.
> > Agree.
> >>
> >> - There has been a demonstrated use for the full power of the linux
> >> networking stack in containers..
> > Agree.
> >>
> >> - There are a set of techniques which look as though they will give
> >> us full speed when we do isolation of the network stack at the
> >> network device/L2 layer.
> > Agree.
>
> Herbert Poetzl <herbert@13thfloor.at> writes:
> > correct, don't get me wrong, I'm absolutely not against
> > layer 2 virtualization, but not at the expense of light-
> > weight layer 3 isolation, which _is_ the traditional way
> > 'containers' are built (see BSD, solaris ...)

> Ok. So on this point we agree. Full isolation at the network device/L2
> level is desirable and no one is opposed to that.

> There is however a strong feeling especially for the case of
> application containers that something more focused on what a
> non-privileged process can use and deal with would be nice.
> The ``L3'' case.

> I agree that has potential but I worry about 2 things.
> - Premature optimization.
> - A poor choice of semantics.
> - Feature creep leading to insane semantics.

> I feel there is something in the L3 arguments as well and it sounds
> like it would be a good idea to flush out the semantics.

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=206
https://new-forum.openvz.org/index.php?t=rview&th=1569&goto=16786#msg_16786
https://new-forum.openvz.org/index.php?t=post&reply_to=16786
https://new-forum.openvz.org/index.php

> For full network isolation we have the case that every process,
> every socket, and every network device belongs to a network namespace.

> This is enough to derive the network namespace for all other user
> visible data structures, and to a large extent to define their
> semantics.

> We still need a definition of the non-privileged case, that is
> compatible with the former definition.

yep, sounds interesting ...

>
>
> What unprivileged user space gets to manipulate are sockets.
> So perhaps we can break our model into a network socket namespace
> and network device namespace.

> I would define it so that for each socket there is exactly one
> network socket namespace. And for each network socket namespace
> there is exactly one network device namespace.

> The network socket namespace would be concerned with the rules for
> deciding which local addresses a socket can connect/accept/bind to.

> The network device namespace would be concerned with everything else.

hmm, guess I've read the word 'semantics' so many times
now, and always in conjunction with insane and unexpected,
so I think it can't hurt to explain the semantics behind
what we currently use once again, maybe I'm missing something

first, what we currently do:

 - a network context consists of a bunch of flags, and
 a set of ip addresses

 - a process is either part of exactly one such context
 or unrestricted

 - at bind() time, collisions are checked (in the * case)
 and addresses are verified against the assigned set

 - at lookup() time, addresses are checked against the
 assigned set (again in the * case)

 - for queries, addresses are checked against the set, and
 if the address is found, the corresponding device will

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 be visible (basically per address)

 - for guest originating traffic, the src address will
 be picked from the set, where the first assigned IP
 is handled special as 'last resort' if no better one
 can be found

here now the semantics:

 - bind() can be done for all IP/port pairs which do not
 conflict with existing sockets
 [identical to the current behaviour]

 - bind() to * is handled like a bind() for each address
 in the assigned set of IPs (if one fails, then the
 entire bind will fail)
 [identical behaviour, subset]

 - lookup() will only match sockets which match the address
 where * now means any IP from the IP set
 [identical behaviour, subset]

 - the source address has to reside within the IP set for
 outgoing traffic

 - netinfo/proc are filtered according to the rule
 address in set -> show address/interface

except for the last one, the behaviour is identical to the
current linux networking behaviour. the hiding of unavailable
interfaces/addresses is a virtualization mechanism we use to
make it look like a separate box, which is sometimes necessary
for certain applications and humans :)

> The problem I see are the wild card binds. In general unmodified
> server applications want to bind to *:port by default. Running
> two such applications on different ip addresses is a problem. Even
> if you can configure them not to do that it becomes easy to do that
> be default.

those are working and running perfectly fine, the only
time you have to take care of such applications is when you
start them outside any isolation container

> There are some interesting flexible cases where we want one
> application container to have one port on IP, and a different
> application container to have a different port on the same IP.

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> So we need something flexible and not just based on IP addresses.
> I think the right answer here is a netfilter table that defines
> what we can accept/bind/connect the socket to.

I'm fine with such an approach, given that this can be used
to get reasonably similar semantics as above wihtout jumping
thorugh hoops

> The tricky part is when do we return -EADDRINUSE.

IMHO not at all, see the 'simple' semantics above

> I think we can specify the rules such that if we conflict with
> another socket in the same socket namespace the rules remain
> as they are today, and the kernel returns it unconditionally.
>
> I think for cases across network socket namespaces it should
> be a matter for the rules, to decide if the connection should
> happen and what error code to return if the connection does not
> happen.
>
> There is a potential in this to have an ambiguous case where two
> applications can be listening for connections on the same socket
> on the same port and both will allow the connection. If that
> is the case I believe the proper definition is the first socket
> that we find that will accept the connection gets the connection.

that is what I call 'unexpected behaviour'

> I believe this is a sufficiently general definition that we can
> make it work with network types in the kernel including DECNET,
> IP, and IPv6.

no idea about decnet, but for IP and IPv6 the beforementioned
semantics work quite fine ...

> The only gain I see for having the socket namespace is socket
> collision detection, and a convenient tag to distinguish containers.

well, you would need the tag anyway IMHO, otherwise I don't
see a way to map the netfilter chains/rules to the 'guests'
or am I missing something here?

> I think this set of netfilter rules may be an interesting alternative
> to ip connection tracking in the current firewall code.
>
> ...
>

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Assuming the above scheme works does that sound about what people
> actually want to use?

from my PoV, folks want to use chbind() to 'jail' a group
of processes (or a single process) to a subset of IP
addresses ...

> I think with the appropriate set of rules it provides what is needed
> for application migration. I.e. 127.0.0.1 can be filtered so that
> you can only connect to sockets in your current container.
>
> It does get a little odd because it does allow for the possibility
> that you can have multiple connected sockets with same source ip,
> source port, destination ip, destination port. If the rules are
> setup appropriately. I don't see that peculiarity being visible on
> the outside network so it shouldn't be a problem.

to the outside it looks perfectly normal, as it does on
the inside ... just the host has the 'full picture'

best,
Herbert

> Eric

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

