
Subject: Re: Re: pspace child_reaper
Posted by Cedric Le Goater on Wed, 30 Aug 2006 13:01:46 GMT
View Forum Message <> Reply to Message

Hello,

Roman Kagan wrote:

[...]

>> As for the per-container init process, the alternative to always
>> enforcing a separate init process for every container is to allow an
>> option of making the process which did the pidspace unshare (or is it
>> the parent of that process) masquerade as (pidspace=new_container, pid=1).
>
> There's no point enforcing a separate 'init' process in every container.
> The root of the process tree in a namespace has to be the child reaper
> for that namespace meaning that
>
> - it is immune to signals, ptracing, etc. from within the pidspace
> - every process in the pidspace is reparented to it once that process'
> parent dies
> - when it dies the whole pidspace is termiated

That's how i feel also.

The key point here is that the process becoming the init of that pidspace
is immune to sigchlg : ignores them or garbage collects them or handles EINTR.

If we feel confortable with the above, let's bring back this question to a
 user space issue : the process doing an unshare of this pidspace must
handle the sigchld one way or the other.

> These are the standard properties of pid == 1 in UNIX. If it happens to
> be (or execs) /sbin/init then indeed it'll sit in the background
> spawning the usual user processes when necessary, but it doesn't have to
> be. E.g. I've just run an FC5 machine with init=/usr/bin/python which
> is how your application container would probably look like (the result
> of 'import os; os.system("ps axf")' in python prompt):
>
> PID TTY STAT TIME COMMAND
> 1 ? S 0:00 /usr/bin/python
> 2 ? SN 0:00 [ksoftirqd/0]
> 3 ? S 0:00 [watchdog/0]
> 4 ? S< 0:00 [events/0]
> 5 ? S< 0:00 [khelper]
> 6 ? S< 0:00 [kthread]
> 8 ? S< 0:00 _ [kblockd/0]

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=205
https://new-forum.openvz.org/index.php?t=rview&th=3257&goto=16566#msg_16566
https://new-forum.openvz.org/index.php?t=post&reply_to=16566
https://new-forum.openvz.org/index.php

> 9 ? S< 0:00 _ [kacpid]
> 67 ? S< 0:00 _ [khubd]
> 122 ? S 0:00 _ [pdflush]
> 123 ? S 0:00 _ [pdflush]
> 125 ? S< 0:00 _ [aio/0]
> 212 ? S< 0:00 _ [kseriod]
> 282 ? S< 0:00 _ [kpsmoused]
> 303 ? S< 0:00 _ [scsi_eh_0]
> 124 ? S 0:00 [kswapd0]
> 290 ? Ss 0:00 /bin/nash /init
> 317 ? S 0:00 [kjournald]
> 329 ? R 0:00 sh -c ps axf
> 330 ? R 0:00 _ ps axf

yes

> so there's no fundamental difference between "system containers" and
> "application containers".

your example uses python which has a wait() loop sitting somewhere because
it needs to know how to handle processes, like any shell command
interpreter. but yes, it's something like this, with a process 1 knowing
how to handle sigchld.

thanks,

C.

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

