
Subject: Re: [PATCH 14/15] Destroy pid namespace on init's death
Posted by Sukadev Bhattiprolu on Thu, 02 Aug 2007 07:29:58 GMT
View Forum Message <> Reply to Message

Oleg Nesterov [oleg@tv-sign.ru] wrote:
| On 07/31, sukadev@us.ibm.com wrote:
| >
| > Oleg Nesterov [oleg@tv-sign.ru] wrote:
| > | >
| > | > @@ -925,9 +926,10 @@ fastcall NORET_TYPE void do_exit(long co
| > | > 	if (unlikely(!tsk->pid))
| > | > 		panic("Attempted to kill the idle task!");
| > | > 	if (unlikely(tsk == task_child_reaper(tsk))) {
| > | > -		if (task_active_pid_ns(tsk) != &init_pid_ns)
| > | > -			task_active_pid_ns(tsk)->child_reaper =
| > | > -					init_pid_ns.child_reaper;
| > | > +		if (pid_ns != &init_pid_ns) {
| > | > +			zap_pid_ns_processes(pid_ns);
| > | > +			pid_ns->child_reaper = init_pid_ns.child_reaper;
| > | > +		}
| > | > 		else
| > | > 			panic("Attempted to kill init!");
| > | > 	}
| > |
| > | Just to remind you, this is not right when init is multi-threaded,
| > | we should do this only when the last thread exits.
| >
| > Sorry, I needed to clarify somethings about the multi-threaded init. I
| > got the impresssion that you were sending a patch for the existing bug,
| > and meant to review/clarify in the context of the patch.
|
| Ah, sorry, I forgot to send the patch to fix the bug in mainline.
| Will try to do tomorrow, please feel free to do this if you wish.

I can do that, but am still a bit confused about this multi-threaded
init :-)

|
| > 	Our current definition of is_container_init() and task_child_reaper()
| > 	refer only to the main-thread of the container-init (since they check
| > 	for pid_t == 1)
|
| Yes.

This means that we cannot have a check like "tsk == task_child_reaper(tsk)"
to properly detect the child reaper process right ?

Its basically a very dumb question - How do we detect a container_init()

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=620
https://new-forum.openvz.org/index.php?t=rview&th=2965&goto=15499#msg_15499
https://new-forum.openvz.org/index.php?t=post&reply_to=15499
https://new-forum.openvz.org/index.php

in the multi-threaded case ? Should we use "task->tgid == 1" ?

IOW to identify if the last thread of a child reaper is exiting, should we
check "task->tgid == 1" and the "group_dead" flag in do_exit() ?

|
| > 	If the main-thread is exiting and is the last thread in the group,
| > 	we want terminate other processes in the pid ns (simple case).
|
| Yes.
|
| > 	If the main thread is exiting, but is not the last thread in the
| > 	group, should we let it exit and let the next thread in the group
| > 	the reaper of the pid ns ?
|
| We can, but why? The main thread's task_struct can't go away until all
| sub-threads exit. Its ->nsproxy will be NULL, but this doesn't matter.

After the main thread exits task_child_reaper() would still refer to
the main thread right ? So when one of the other processes in the
namespace calls forget_original_parent(), it would reparent the process
to the main thread - no ? The main thread still has a valid task_struct,
but it has exited and cannot adapt children...

BTW, are there any actual users of multi-threaded init ? Or is this
something that can be considered outside the "core" patchset and
addressed soon, but separately like the signalling-container-init issue ?

|
| > 	Then we would have the pid ns w/o a container-init (i.e reaper
| > 	does not have a pid_t == 1, but probably does not matter).
| >
| > 	And, when this last thread is exiting, we want to terminate other
| > 	processes in the ns right ?
|
| Yes, when this last thread is exiting, the entire process is exiting.
|
| > | > +void zap_pid_ns_processes(struct pid_namespace *pid_ns)
| > | > +{
| > | > +	int nr;
| > | > +	int rc;
| > | > +	int options = WEXITED|__WALL;
| > | > +
| > | > +	/*
| > | > +	 * We know pid == 1 is terminating. Find remaining pid_ts
| > | > +	 * in the namespace, signal them and then wait for them
| > | > +	 * exit.
| > | > +	 */

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

| > | > +	nr = next_pidmap(pid_ns, 1);
| > | > +	while (nr > 0) {
| > | > +		kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr);
| > | > +		nr = next_pidmap(pid_ns, nr);
| > | > +	}
| > |
| > | Without tasklist_lock held this is not reliable.
| >
| > Ok. BTW, find_ge_pid() also walks the pidmap, but does not seem to hold
| > the tasklist_lock. Is that bc its only used in /proc ?
|
| Yes, but this is something different. With or without tasklist_lock,
| find_ge_pid()/next_tgid() is not "reliable" (note that alloc_pid() doesn't
| take tasklist), but this doesn't matter for /proc.
|
| We should take tasklist_lock to prevent the new process creation.
| We can have the "false positives" (copy_process() in progress, PGID/SID
| pids), but this is OK. Note that copy_process() checks signal_pending()
| after write_lock_irq(&tasklist_lock), that is why it helps.

Ok. Thx.

|
| Oleg.

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

