
Subject: Re: [PATCH 11/15] Signal semantics
Posted by Oleg Nesterov on Fri, 27 Jul 2007 12:30:12 GMT
View Forum Message <> Reply to Message

Damn. I don't have time to read these patches today (will try tomorrow),
but when I glanced at this patch yesterday I had some suspicions...

On 07/26, Pavel Emelyanov wrote:
>
> +++ linux-2.6.23-rc1-mm1-7/kernel/signal.c	2007-07-26
> 16:36:37.000000000 +0400
> @@ -323,6 +325,9 @@ static int collect_signal(int sig, struc
> 	if (first) {
> 		list_del_init(&first->list);
> 		copy_siginfo(info, &first->info);
> +		if (first->flags & SIGQUEUE_CINIT)
> +			kinfo->flags |= KERN_SIGINFO_CINIT;
> +
>
> [...snip...]
>
> @@ -1852,7 +1950,7 @@ relock:
> 		 * within that pid space. It can of course get signals from
> 		 * its parent pid space.
> 		 */
> -		if (current == task_child_reaper(current))
> +		if (kinfo.flags & KERN_SIGINFO_CINIT)
> 			continue;

I think the whole idea is broken, it assumes the sender put something into
"struct sigqueue".

Suppose that /sbin/init has no handler for (say) SIGTERM, and we send this
signal from the same namespace. send_signal() sets SIGQUEUE_CINIT, but it
is lost because __group_complete_signal() silently "converts" sig_fatal()
signals to SIGKILL using sigaddset().

> +static void encode_sender_info(struct task_struct *t, struct sigqueue *q)
> +{
> +	/*
> +	 * If sender (i.e 'current') and receiver have the same active
> +	 * pid namespace and the receiver is the container-init, set the
> +	 * SIGQUEUE_CINIT flag. This tells the container-init that the
> +	 * signal originated in its own namespace and so it can choose
> +	 * to ignore the signal.
> +	 *
> +	 * If the receiver is the container-init of a pid namespace,
> +	 * but the sender is from an ancestor pid namespace, the

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=691
https://new-forum.openvz.org/index.php?t=rview&th=2965&goto=15346#msg_15346
https://new-forum.openvz.org/index.php?t=post&reply_to=15346
https://new-forum.openvz.org/index.php

> +	 * container-init cannot ignore the signal. So clear the
> +	 * SIGQUEUE_CINIT flag in this case.
> +	 *
> +	 * Also, if the sender does not have a pid_t in the receiver's
> +	 * active pid namespace, set si_pid to 0 and pretend it originated
> +	 * from the kernel.
> +	 */
> +	if (pid_ns_equal(t)) {
> +		if (is_container_init(t)) {
> +			q->flags |= SIGQUEUE_CINIT;

Ironically, this change carefully preserves the bug we already have :)

This doesn't protect init from "bad" signal if we send it to sub-thread
of init. Actually, this make the behaviour a bit worse compared to what
we currently have. Currently, at least the main init's thread survives
if we send SIGKILL to sub-thread.

> static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
> 			struct sigpending *signals)
> {
> @@ -710,6 +781,7 @@ static int send_signal(int sig, struct s
> 			copy_siginfo(&q->info, info);
> 			break;
> 		}
> +		encode_sender_info(t, q);

We still send the signal if __sigqueue_alloc() fails. In that case, the
dequeued siginfo won't have SIGQUEUE_CINIT/KERN_SIGINFO_CINIT, not good.

> @@ -1158,6 +1232,13 @@ static int kill_something_info(int sig,
>
> 		read_lock(&tasklist_lock);
> 		for_each_process(p) {
> +			/*
> +			 * System-wide signals apply only to the sender's
> +			 * pid namespace, unless issued from init_pid_ns.
> +			 */
> +			if (!task_visible_in_pid_ns(p, my_ns))
> +				continue;
> +
> 			if (p->pid > 1 && p->tgid != current->tgid) {

This "p->pid > 1" check should die.

> +static int deny_signal_to_container_init(struct task_struct *tsk, int sig)
> +{
> +	/*

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +	 * If receiver is the container-init of sender and signal is SIGKILL
> +	 * reject it right-away. If signal is any other one, let the container
> +	 * init decide (in get_signal_to_deliver()) whether to handle it or
> +	 * ignore it.
> +	 */
> +	if (is_container_init(tsk) && (sig == SIGKILL) && pid_ns_equal(tsk))
> +		return -EPERM;
> +
> +	return 0;
> +}
> +
> /*
> * Bad permissions for sending the signal
> */
> @@ -545,6 +584,10 @@ static int check_kill_permission(int sig
> 	 && !capable(CAP_KILL))
> 		return error;
>
> +	error = deny_signal_to_container_init(t, sig);
> +	if (error)
> +		return error;

Hm. Could you explain this change? Why do we need a special check for SIGKILL?

(What about ptrace_attach() btw? If it is possible to send a signal to init
 from the "parent" namespace, perhaps it makes sense to allow ptracing as
 well).

Oleg.

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

