
Subject: Re: Per container statistics (containerstats)
Posted by Andrew Morton on Thu, 07 Jun 2007 22:54:45 GMT
View Forum Message <> Reply to Message

On Wed, 6 Jun 2007 17:28:13 +0530
Balbir Singh <balbir@linux.vnet.ibm.com> wrote:

> Hi, Andrew/Paul,
>
> Here's the latest version of containerstats ported to v10. Could you
> please consider it for inclusion
>
> Changelog
>
> 1. Instead of parsing long container path's use the dentry to match the
> container for which stats are required. The user space application
> opens the container directory and passes the file descriptor, which
> is used to determine the container for which stats are required.
> This approach was suggested by Paul Menage
>
> This patch is inspired by the discussion at http://lkml.org/lkml/2007/4/11/187
> and implements per container statistics as suggested by Andrew Morton
> in http://lkml.org/lkml/2007/4/11/263. The patch is on top of 2.6.21-mm1
> with Paul's containers v9 patches (forward ported)
>
> This patch implements per container statistics infrastructure and re-uses
> code from the taskstats interface. A new set of container operations are
> registered with commands and attributes. It should be very easy to
> *extend* per container statistics, by adding members to the containerstats
> structure.
>
> The current model for containerstats is a pull, a push model (to post
> statistics on interesting events), should be very easy to add. Currently
> user space requests for statistics by passing the container file descriptor.
> Statistics about the state of all the tasks in the container is returned to
> user space.
>
> TODO's/NOTE:
>
> This patch provides an infrastructure for implementing container statistics.
> Based on the needs of each controller, we can incrementally add more statistics,
> event based support for notification of statistics, accumulation of taskstats
> into container statistics in the future.
>
> Sample output
>
> # ./containerstats -C /container/a
> sleeping 2, blocked 0, running 1, stopped 0, uninterruptible 0

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=2686&goto=13919#msg_13919
https://new-forum.openvz.org/index.php?t=post&reply_to=13919
https://new-forum.openvz.org/index.php

>
> # ./containerstats -C /container/
> sleeping 154, blocked 0, running 0, stopped 0, uninterruptible 0
>
> If the approach looks good, I'll enhance and post the user space utility for
> the same
>
> Feedback, comments, test results are always welcome!
>
>
>
> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
> ---
>
> Documentation/accounting/containerstats.txt | 27 ++++++++++
> include/linux/Kbuild | 1
> include/linux/container.h | 8 +++
> include/linux/containerstats.h | 70 ++++++++++++++++++++++++++++
> include/linux/delayacct.h | 11 ++++
> kernel/container.c | 63 +++++++++++++++++++++++++
> kernel/sched.c | 4 +
> kernel/taskstats.c | 66 ++++++++++++++++++++++++++
> 8 files changed, 250 insertions(+)

I'd have hoped to see containerstats.c in here.

> diff -puN /dev/null include/linux/containerstats.h
> --- /dev/null	2007-06-01 20:42:04.000000000 +0530
> +++ linux-2.6.22-rc2-mm1-balbir/include/linux/containerstats.h	2007-06-05 17:23:56.000000000
+0530
> @@ -0,0 +1,70 @@
> +/* containerstats.h - exporting per-container statistics
> + *
> + * __ Copyright IBM Corporation, 2007
> + * Author Balbir Singh <balbir@linux.vnet.ibm.com>
> + *
> + * This program is free software; you can redistribute it and/or modify it
> + * under the terms of version 2.1 of the GNU Lesser General Public License
> + * as published by the Free Software Foundation.
> + *
> + * This program is distributed in the hope that it would be useful, but
> + * WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
> + */
> +
> +#ifndef _LINUX_CONTAINERSTATS_H
> +#define _LINUX_CONTAINERSTATS_H
> +

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +#include <linux/taskstats.h>

I don't understand the relationship between containerstats and taskstats.
afacit it's using the same genetlink channel?

> +/*
> + * Data shared between user space and kernel space on a per container
> + * basis. This data is shared using taskstats.
> + *
> + * Most of these states are derived by looking at the task->state value
> + * For the nr_io_wait state, a flag in the delay accounting structure
> + * indicates that the task is waiting on IO
> + *
> + * Each member is aligned to a 8 byte boundary.
> + */
> +struct containerstats {
> +	__u64	nr_sleeping;		/* Number of tasks sleeping */
> +	__u64	nr_running;		/* Number of tasks running */
> +	__u64	nr_stopped;		/* Number of tasks in stopped state */
> +	__u64	nr_uninterruptible;	/* Number of tasks in uninterruptible */
> +					/* state */
> +	__u64	nr_io_wait;		/* Number of tasks waiting on IO */
> +};
> +
> +/*
> + * Commands sent from userspace
> + * Not versioned. New commands should only be inserted at the enum's end
> + * prior to __CONTAINERSTATS_CMD_MAX
> + */
> +
> +enum {
> +	CONTAINERSTATS_CMD_UNSPEC = __TASKSTATS_CMD_MAX,	/* Reserved */

This seems to mean that the containerstats commands all get renumbered if
we add new taskstats commands. That would be bad?

> + */
> +int containerstats_build(struct containerstats *stats, struct dentry *dentry)
> +{
> +	int ret = -EINVAL;
> +	struct task_struct *g, *p;
> +	struct container *cont, *root_cont;
> +	struct container *src_cont;
> +	int subsys_id;
> +	struct containerfs_root *root;
> +
> +	/*
> +	 * Validate dentry by checking the superblock operations

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +	 */
> +	if (dentry->d_sb->s_op != &container_ops)
> +		 goto err;
> +
> +	ret = 0;
> +	src_cont = (struct container *)dentry->d_fsdata;

Unneeded cast.

> +	rcu_read_lock();
> +
> +	for_each_root(root) {
> +		if (!root->subsys_bits)
> +			continue;
> +		root_cont = &root->top_container;
> +		get_first_subsys(root_cont, NULL, &subsys_id);
> +		do_each_thread(g, p) {

this needs tasklist_lock?

> +			cont = task_container(p, subsys_id);
> +			if (cont == src_cont) {
> +				switch (p->state) {
> +				case TASK_RUNNING:
> +					stats->nr_running++;
> +					break;
> +				case TASK_INTERRUPTIBLE:
> +					stats->nr_sleeping++;
> +					break;
> +				case TASK_UNINTERRUPTIBLE:
> +					stats->nr_uninterruptible++;
> +					break;
> +				case TASK_STOPPED:
> +					stats->nr_stopped++;
> +					break;
> +				default:
> +					if (delayacct_is_task_waiting_on_io(p))
> +						stats->nr_io_wait++;
> +					break;
> +				}
> +			}
> +		} while_each_thread(g, p);
> +	}
> +	rcu_read_unlock();
> +err:
> +	return ret;
> +}
> +

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> static int cmppid(const void *a, const void *b)
> {
> 	return *(pid_t *)a - *(pid_t *)b;
> diff -puN kernel/sched.c~containers-taskstats kernel/sched.c
> --- linux-2.6.22-rc2-mm1/kernel/sched.c~containers-taskstats	2007-06-05 17:21:57.000000000
+0530
> +++ linux-2.6.22-rc2-mm1-balbir/kernel/sched.c	2007-06-05 17:21:57.000000000 +0530
> @@ -4280,11 +4280,13 @@ void __sched io_schedule(void)
> {
> 	struct rq *rq = &__raw_get_cpu_var(runqueues);
>
> +	delayacct_set_flag(DELAYACCT_PF_BLKIO);
> 	delayacct_blkio_start();

Would it be suitable and appropriate to embed the delayacct_set_flag() call
inside delayacct_blkio_start()?

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

