
Subject: user namespace - introduction
Posted by serue on Mon, 04 Jun 2007 19:39:57 GMT
View Forum Message <> Reply to Message

[I've been sitting on this for some months, and am just dumping it so
people can talk if they like, maybe even build on the patchset by
adding support for more filesystems or implementing the keyring. Or
tell me how much the approach sucks.]

First, I point out once more that the base user namespace patchset
Cedric originally sent out really is sufficient. We just need for users
to have different quotas, limits, and in-kernel key storage. Signal
delivery, file controls, etc can be set up using pidspaces and separate
mount trees, using selinux policy or other lsms, and even using
ecryptfs.

But if it will be insisted upon that uid checks be enhanced, here is
a new patchset which just might satisfy everyone, and which is based
on user namespace discussions from the last year, particularly
comments by Eric Biederman and David Howells.

Below is how I think the user namespace controls would work. The
patches that follow only touch on parts of steps 1-4.

 1. let filesystem tag inodes and superblocks with one user namespace
 2. let generic_permission - and through inode->i_op->permission, the
 fs, if it wants to be smarter - enforce user namespaces
 3. by default, inode->i_userns comes from sb->s_userns, just as is
 done in these patches.
 4. By default, if inode->i_userns != task->userns, the process gets
 treated as 'nobody'. This is a change from my current patches and
 what is done in -lxc, where all permission is denied. I think it
 is a far preferable behavior. It allows read-only bind mount
 sharing among user namespaces without a silly MS_USER_NS flag.
 5. Capabilities relating to actions on subjects or objects associated
 with a user namespace are only effective for targets in the same
 user namespace as the actor.
 This *could* be changed to also work for targets in decendant
 user namespaces, but that could slow things down.
 6. Create a new keychain for user namespaces. Two types of entries.
 The first type of entry, (user_ns 5, uid 501) means that whichever
 user has that key will be recognized in user namespace 5 as uid
 501. Presumably, uid 501 in user_ns 5 would have started a vserver
 with a new user namespace, say user_ns 7. He would likely want to
 give uid 0 in user_ns 7 a (user_ns 5, uid 501) key.
 The second type of key, (user_ns 5, CAP_FOWNER) gives the user

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=2675&goto=13755#msg_13755
https://new-forum.openvz.org/index.php?t=post&reply_to=13755
https://new-forum.openvz.org/index.php

 holding the key the ability to have CAP_FOWNER in userns 5. By
 default, uid 0 in userns 7 cannot have CAP_FOWNER in userns 5.
 (Only) a task with (userns 5, CAP_SETPCAP) can give that key to
 any user in userns 7. The key by itself does not grant the
 capability, but allows a task with that uid which has CAP_FOWNER
 in its P set to assert it for userns 5.

 7. Eventually filesystems could begin storing global uids in inode
 xattrs on disk, and use these in inode->i_op->permission() along
 with data in the user's userns key to do global uid permission
 checking. Really this should almost trivial to implement once
 the above has been implemented. It could be done right in ext234
 etc, or in a small stackable fs.

-serge

Note: step 1 has been complained about bc some think it should be done
at the vfsmount level. If you read through the whole set of steps I
think you'll see why it is not more limited. The fs gets to decide the
real owner of a file, and despite there being one real owner, any number
of users can be made to be treated as the owner, so there is no
limitation in this approach.

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

