Subject: Re: [PATCH 8/8] Per-container pages reclamation
Posted by Andrew Morton on Wed, 30 May 2007 21:47:37 GMT

View Forum Message <> Reply to Message

On Wed, 30 May 2007 19:42:26 +0400
Pavel Emelianov <xemul@openvz.org> wrote:

> Implement try_to_free_pages_in_container() to free the
> pages in container that has run out of memory.

>

> The scan_control->isolate_pages() function is set to

> isolate_pages_in_container() that isolates the container
> pages only. The exported __isolate_Iru_page() call

> makes things look simpler than in the previous version.
>

> Includes fix from Balbir Singh <balbir@in.ibm.com>

>

>}

>

> +void container_rss_move_lists(struct page *pg, bool active)
> +{

> + struct rss_container *rss;
> + struct page_container *pc;
>+

> + if (Ipage_mapped(pg))
>+ return;

>+

> + pc = page_container(pg);
>+ if (pc == NULL)

>+ return;

>+

> + 1SS = pc->cnt;
>+

> + spin_lock(&rss->res.lock);

> + if (active)

>+ list._ move(&pc->list, &rss->active_list);
> + else

>+ list._move(&pc->list, &rss->inactive_list);
> + spin_unlock(&rss->res.lock);

> +}

This is an interesting-looking function. Please document it?
I'm inferring that the rss container has an active and inactive list and
that this basically follows the same operation as the traditional per-zone

lists?

Would | be correct in guessing that pages which are on the

Page 1 of 4 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=2643&goto=13618#msg_13618
https://new-forum.openvz.org/index.php?t=post&reply_to=13618
https://new-forum.openvz.org/index.php

per-rss-container lists are also eligible for reclaim off the traditional

page LRUs? If so, how does that work? When a page gets freed off the
per-zone LRUs does it also get removed from the per-rss_container LRU? But
how can this be right? Pages can get taken off the LRU and freed at

interrupt time, and this code isn't interrupt-safe.

| note that this lock is not irg-safe, whereas the Iru locks are irg-safe.
So we don't perform the rotate_reclaimable_page() operation within the RSS
container? | think we could do so. | wonder if this was considered.

A description of how all this code works would help a lot.

> +static unsigned long isolate_container_pages(unsigned long nr_to_scan,
> + struct list_head *src, struct list_head *dst,

>+ unsigned long *scanned, struct zone *zone, int mode)

> +{

> + unsigned long nr_taken = 0;

> + struct page *page;

> + struct page_container *pc;

> + unsigned long scan;

>+ LIST_HEAD(pc_list);

>+

> + for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
>+ pc = list_entry(src->prev, struct page_container, list);

>+ page = pc->page;

> + if (page_zone(page) != zone)

>+ continue;

That page_zone() check is interesting. What's going on here?

I'm suspecting that we have a problem here: if there are a lot of pages on
*src which are in the wrong zone, we can suffer reclaim distress leading to
omme-killings, or excessive CPU consumption?

>+ list._move(&pc->list, &pc_list);
>+

>+ if (__isolate_Iru_page(page, mode) == 0) {
>+ list_move(&page->Iru, dst);
>+ nr_taken++;

>+ }

>+}

>+

> + list_splice(&pc_list, src);

>+

> + *scanned = scan;

> + return nr_taken;

> +}

>+

Page 2 of 4 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

> +unsigned long isolate_pages_in_container(unsigned long nr_to_scan,
>+ struct list_head *dst, unsigned long *scanned,

> + int order, int mode, struct zone *zone,

> + struct rss_container *rss, int active)

> +{

> + unsigned long ret;

>+

> + spin_lock(&rss->res.lock);

> + if (active)

> + ret = isolate_container_pages(nr_to_scan, &rss->active_list,
>+ dst, scanned, zone, mode);

> + else

> + ret = isolate_container_pages(nr_to_scan, &rss->inactive_list,
>+ dst, scanned, zone, mode);

> + spin_unlock(&rss->res.lock);

> + return ret;

> +}

>+

> void container_rss_add(struct page_container *pc)

{
struct page *pg;

V V V V

>

> +#ifdef CONFIG_RSS_CONTAINER

> +unsigned long try_to_free_pages_in_container(struct rss_container *cnt)
> +{

> + struct scan_control sc = {

>+ .gfp_mask = GFP_KERNEL,

>+ .may_writepage =1,

>+ .swap_cluster_max =1,

>+ .may_swap =1,

>+ .swappiness = vm_swappiness,

>+ .order =0, /* in this case we wanted one page only */

>+ .cnt=cnt,

> + .isolate_pages = isolate_pages_in_container,

>+

> + int node;

> + struct zone **zones;

>+

> + for_each_online_node(node) {

> +#ifdef CONFIG_HIGHMEM

>+ zones = NODE_DATA(node)->node_zonelists[ZONE_HIGHMEM].zones;
>+ if (do_try_to_free_pages(zones, sc.gfp_mask, &sc))

>+ returnl;

> +#endif

>+ zones = NODE_DATA(node)->node_zonelists[ZONE_NORMAL].zones;
>+ if (do_try_to_free_pages(zones, sc.gfp_mask, &sc))

Page 3 of 4 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

>+ return 1;
> +}

Definitely need to handle ZONE_DMA32 and ZONE_DMA (some architectures put
all memory into ZONE_DMA (or they used to))

> + return O;

> +}

> +#endif

>+

> unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
>{

> struct scan_control sc = {

Page 4 of 4 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

