
Subject: Re: [ckrm-tech] [RFC][PATCH][2/4] Add RSS accounting and control
Posted by Vaidyanathan Srinivas on Tue, 20 Feb 2007 06:40:34 GMT
View Forum Message <> Reply to Message

Balbir Singh wrote:
> Vaidyanathan Srinivasan wrote:
>> Balbir Singh wrote:
>>> Paul Menage wrote:
>>>> On 2/19/07, Balbir Singh <balbir@in.ibm.com> wrote:
>>>>>> More worrisome is the potential for use-after-free. What prevents the
>>>>>> pointer at mm->container from referring to freed memory after we're dropped
>>>>>> the lock?
>>>>>>
>>>>> The container cannot be freed unless all tasks holding references to it are
>>>>> gone,
>>>> ... or have been moved to other containers. If you're not holding
>>>> task->alloc_lock or one of the container mutexes, there's nothing to
>>>> stop the task being moved to another container, and the container
>>>> being deleted.
>>>>
>>>> If you're in an RCU section then you can guarantee that the container
>>>> (that you originally read from the task) and its subsystems at least
>>>> won't be deleted while you're accessing them, but for accounting like
>>>> this I suspect that's not enough, since you need to be adding to the
>>>> accounting stats on the correct container. I think you'll need to hold
>>>> mm->container_lock for the duration of memctl_update_rss()
>>>>
>>>> Paul
>>>>
>>> Yes, that sounds like the correct thing to do.
>>>
>> Accounting accuracy will anyway be affected when a process is migrated
>> while it is still allocating pages. Having a lock here does not
>> necessarily improve the accounting accuracy. Charges from the old
>> container would have to be moved to the new container before deletion
>> which implies all tasks have already left the container and no
>> mm_struct is holding a pointer to it.
>>
>> The only condition that will break our code will be if the container
>> pointer becomes invalid while we are updating stats. This can be
>> prevented by RCU section as mentioned by Paul. I believe explicit
>> lock and unlock may not provide additional benefit here.
>>
>
> Yes, if the container pointer becomes invalid, then consider the following
> scenario
>
> 1. Use RCU, get a reference to the container

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1203
https://new-forum.openvz.org/index.php?t=rview&th=1994&goto=10510#msg_10510
https://new-forum.openvz.org/index.php?t=post&reply_to=10510
https://new-forum.openvz.org/index.php

> 2. All tasks/mm's move to newer container (and the accounting information
> moves)
> 3. Container is RCU deleted
> 4. We still charge the older container that is going to be deleted soon
> 5. Release RCU
> 6. RCU garbage collects (callback runs)
>
> We end up charging/uncharging a soon to be deleted container, that
> is not good.
>
> What did I miss?

You are right. We should go with your read/write lock method. Later
we can evaluate if using an RCU and then fixing the wrong charge will
work better or worse.

--Vaidy

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

