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Abstract. Hypervisors, popularized by Xen and
VMware, are quickly becoming commodity. They are
appropriate for many usage scenarios, but there are sce-
narios that require system virtualization with high de-
grees of both efficiency and isolation. Examples include
HPC clusters, the Grid, hosting centers, and PlanetLab.
We present an alternative to hypervisors that is better
suited for such scenarios. This approach is a synthe-
sis of prior work on resource containers and security
containers applied to general-purpose, time-shared op-
erating systems. Examples of such container-based sys-
tems include Solaris 10, Virtuozzo for Linux, and Linux
VServers. This paper describes the design and imple-
mentation of Linux Vservers–as a representative instance
of container-based systems–and contrasts it with Xen,
both architecturally and in terms of efficiency and sup-
port for isolation.

1 Introduction

Operating system designers face a fundamental ten-
sion between isolating applications and enabling shar-
ing among them—to simultaneously support the illusion
that each application has the physical machine to itself,
yet let applications share objects (e.g., files, pipes) with
each other. Today’s commodity operating systems, de-
signed for personal computers and adapted from earlier
time-sharing systems, typically provide a relatively weak
form of isolation (the process abstraction) with generous
facilities for sharing (e.g., a global file system and global
process ids). In contrast, hypervisors strive to provide
full isolation between virtual machines (VMs), provid-
ing no more support for sharing between VMs than the
network provides between physical machines.

The point in the design space that a given system sup-
ports depends on the workload it is designed to han-
dle. Workstation operating systems generally run mul-
tiple applications on behalf of a single user, making it
natural to favor sharing over isolation. Hypervisors are
often designed to let a single machine host multiple un-
related applications, which may run on behalf of inde-
pendent organizations, for instance, in the case of a data

center consolidating multiple physical servers onto a sin-
gle machine. The applications in such a scenario have no
need to share information. Indeed, it is important they
have no impact on each other. For this reason, hypervi-
sors heavily favor full isolation over sharing. However,
when each virtual machine is running the same kernel
and similar operating system distributions, the degree of
isolation offered by hypervisors comes at the cost of ef-
ficiency relative to running all applications on the same
operating system.

A number of emerging usage scenarios—such as HPC
clusters, Grid, web/db/game hosting organizations, dis-
tributed hosting (e.g., PlanetLab, Akamai)—benefit from
virtualization techniques to isolate different groups of
users and their applications from each other. What these
usage scenarios share is the need for efficient use of sys-
tem resources, either in terms of raw performance for a
single or small number of VMs, or in terms of sheer scal-
ability of concurrently active VMs.

This paper describes a virtualization approach de-
signed to make efficient use of system resources while
maintaining a high degree of isolation between VMs.
The approach synthesizes ideas from prior work on re-
source containers [3, 13] and security containers [7, 20,
1, 22] as applied to general-purpose, time-shared oper-
ating systems. Indeed, variants of such container-based
operating systems are in production use today—e.g., So-
laris 10 [17], Virtuozzo [19], and Linux VServer [11].

The paper makes two contributions. First, it is the first
thorough description of the overall techniques used by
VServer. We choose VServer as the representative in-
stance of the container-based system for several reasons:
1) it is open source, 2) it is in production use, and 3) be-
cause we have real data and experience from operating
600+ VServer-enabled machines on PlanetLab [5].

Second, we contrast the differences between VServer
with a recent generation of Xen, which architecturally
has changed drastically since its original design was
described by Barham et al. [4]. In terms of perfor-
mance, the two solutions are equal for CPU bound
workloads, whereas for I/O centric (server) workloads
VServer makes more efficient use of system resources
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and thereby achieves better overall performance. In
terms of scalability, VServer can far out scale Xen for
usage scenarios where overbooking of system resources
is required (e.g., PlanetLab, managed web hosting, etc),
whereas for reservation based usage scenarios involving
a small number of VMs VServer retains an advantage as
it inherently avoids duplicating operating system state.

The next section presents a motivating case for con-
tainer based systems. Section 3 presents container-based
techniques in further detail, and describes the design and
implementation of VServer. Section 4 reproduces bench-
marks that have become the standard for Xen and con-
trasts those with what can be achieved with VServer.
Section 5, describes the kinds of interference observed
between VMs. Finally, Section 6 offers some conclud-
ing remarks.

2 Motivation

This section motivates the utility of container-based vir-
tualization. For clarity, we settle on a single set of termi-
nology, drawn from the recent virtual machine literature:
we refer to the underlying system providing virtualiza-
tion as a virtual machine monitor (VMM) rather than a
container-based OS or hypervisor, and the isolated exe-
cution contexts running on top of a VMM as virtual ma-
chines (VMs) rather than processes, containers, or do-
mains.

We first outline the usage scenarios of VM technology
to set the context within which we compare and contrast
the different approaches to virtualization. We then sub-
stantiate the case for container-based VMMs.

2.1 Usage Scenarios

There are several innovative ideas that exploit VMs to se-
cure work environments on laptops, detect virus attacks
in real-time, determine the cause of computer break-ins,
and debug difficult to track down system failures. Today,
VMs are predominantly used by programmers to ease
software development and testing, by IT centers to con-
solidate dedicated servers onto more cost effective hard-
ware, and by traditional hosting organizations to sell vir-
tual private servers (VPS). Other emerging, real-world
scenarios for which people are either considering, eval-
uating, or actively using VM technologies include HPC
clusters, the Grid, and distributed hosting organizations
like PlanetLab. This paper focuses on these three emerg-
ing scenarios, for which efficiency is paramount.

Compute farms, as typically realized by HPC clusters
and idealized by the Grid vision, try to support many

different users (and their application’s specific software
configurations) in a batch-scheduled manner. Experi-
ence shows most software configuration problems en-
countered on compute farms are due to incompatibilities
of the system software provided by a specific OS dis-
tribution, as opposed to the kernel itself. Giving users
the ability to use their own distribution or specialized
versions of system libraries in a VM would resolve this
point of pain. While compute farms would not need to
run many concurrent VMs (often just one per physical
machine at a time), they are nonetheless very sensitive to
raw performance issues as they try to maximize the num-
ber of jobs they can push through the overall system per
day.

In contrast, hosting organizations tend to run many
copies of the same server software, operating system dis-
tribution, and kernels in their mix of VMs. In for-profit
scenarios, hosting organizations seek to benefit from an
economy of scale and need to reduce the marginal cost
per customer VM. Such hosting organizations are sensi-
tive to issues of efficiency as they try to carefully over-
subscribe their physical infrastructure with as many VMs
as possible, without reducing overall quality of service.
Unfortunately, companies are reluctant to release just
how many VMs they operate on their hardware.

Fortunately, CoMon [21]—one of the performance-
monitoring services running on PlanetLab—publically
releases a wealth of statistics relating to the VMs op-
erating on PlanetLab. PlanetLab is a non-profit con-
sortium whose charter is to enable planetary-scale net-
working and distributed systems research at an unprecen-
dented scale. Research organizations join by dedicating
at least two machines connected to the Internet to Planet-
Lab. PlanetLab lets researchers use these machines, and
each research project is placed into a separate VM per
machine (referred to as a slice). PlanetLab supports a
workload consisting of a mix of one-off experiments and
long-running services with its slice abstraction.

CoMon classifies a VM as active on a node if it con-
tains a process, and live if, in the last five minutes, it used
at least 0.1% (300ms) of the CPU. Figure 1 shows, by
quartile, the distribution of active and live VMs across
PlanetLab during the past year. Each graph shows five
lines; 25% of PlanetLab nodes have values that fall be-
tween the first and second lines, 25% between the second
and third, and so on. We note that, in any five-minute in-
terval, it is not unusual to see 10-15 live VMs and 60
active VMs on PlanetLab. At the same time, PlanetLab
nodes are PC-class boxes; the average PlanetLab node
has a 2GHz CPU and 1GB of memory. Any system that
hosts such a workload on similar hardware must be con-
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Figure 1: Active and live slices on PlanetLab

Features Hyper- Containers
visor

Fault Isolation ✓ ✕
Resource Isolation ✓ ✓
Security Isolation ✓ ✓

Multiple Kernels ✓ ✕
Administrative power (root) ✓ ✓
Checkpoint & Resume ✓ ✓ [14, 19, 16]

Live Migration ✓ ✓ [19, 16]

Live System Update ✕ ✓ [16]

Table 1: Feature comparison of hypervisor and container
based systems

cerned with both performance and scalability of the un-
derlying VMM.

2.2 Case for Container-Based VMMs

The case for container-based VMMs rests on the as-
sumption that for some real-world scenarios it is ac-
ceptable to trade isolation for efficiency. Sections 4
and 5 demonstrate quantitatively that a container-based
VMM (VServer) is more efficient than a well designed
hypervisor-based VMM (Xen). The question is, what
does a VMM user have to give up to get that performance
boost?

Table 1 provides a list of popular features that attract
users to VM technologies. The three top rows define dif-
ferent kinds of isolation: fault isolation, resource isola-
tion, and security isolation. A system provides full iso-

lation if it supports all three kinds. As the following dis-
cussion illustrates, there is signifcant overlap of features
between container- and hypervisor-based VMMs.

The fault isolation feature corresponds to the VMM’s
ability to isolate faults in one VM from affecting an-
other VM. To ensure complete fault isolation requires
that there is no direct sharing of code or data between
VMs. However, the design of a container-based VMM
consists of applying virtualization abstractions directly
to a single, shared kernel (such as Linux). Therefore,
a container-based VMM inherently cannot provide fault
isolation from a kernel crash like a hypervisor can.

The resource isolation feature corresponds to the
VMM’s ability to isolate the resource consumption of
one VM from that of another VM; undesired interac-
tions between VMs are sometimes called cross-talk [9].
Providing resource isolation generally involves careful
scheduling and allocation of physical machine resources
(e.g., cycles, memory, link bandwidth, disk space), but
can also be influenced by VMs sharing logical resources,
such as file descriptors and memory buffers. At one ex-
treme, a VMM that supports resource reservations might
guarantee that a VM will receive 100 million cycles per
second (Mcps) and 1.5Mbps of link bandwidth, indepen-
dent of any other applications running on the machine.
At the other extreme, a VMM might let VMs obtain cy-
cles and bandwidth on a demand-driven (best-effort) ba-
sis. Many hybrid approaches are also possible: for in-
stance, a VMM may enforce fair sharing of resources be-
tween classes of VMs, which lets one overbook available
resources while preventing starvation in overload scenar-
ios. The key point is that both hypervisor- and container-
based VMMs incorporate sophisticated resource sched-
ulers to avoid or minimize crosstalk.

The security isolation feature refers to the extent to
which the VMM limits access to (and information about)
logical objects, such as files, memory addresses, port
numbers, user ids, process ids, and so on. A VMM with
complete security isolation does not reveal the names of
files or process ids belonging to another VM, let alone let
one VM access or manipulate such objects. In contrast, a
VMM that supports partial security isolation might sup-
port a shared namespace (e.g., a global file system), aug-
mented with an access control mechanism that limits the
ability of one VM to manipulate the objects owned by
another VM. Security isolation promotes (1) configura-
tion independence, so that global names (e.g., of files,
sysv shm keys) selected by one VM cannot conflict with
names selected by another VM; and (2) safety, so one
VM is not able to see or modify data and code belong-
ing to another VM, which increases the likelihood that
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Figure 2: Summary of existing VMM technology

a compromise to one VM does not affect others on the
same machine. Both hypervisors and containers can hide
logical objects in one VM from other VMs.

Finally, hypervisor-based solutions are often em-
braced for their ability to support the other features listed
in Table 1, including the ability to run multiple ker-
nels side-by-side, have administrative power (i.e., root)
within a VM, checkpoint and resume, and migrate VMs
between physical hosts. Since container-based VMMs
rely on a single underlying kernel image, they are of
course not able to run multiple kernels like hypervisor
VMMs can. However, container-based solutions support
the other features—and the corresponding references are
provided in the table. In fact, at least one solution sup-
porting container-based migration goes a step further: it
enables VM migration from one kernel version to an-
other. This powerful feature lets systems administrators
do a Live System Update on a running system, e.g., to re-
lease a new kernel with bug/security fixes, performance
enhancements, or new features, without needing to shut-
down the VM. Kernel version migration is possible be-
cause container-based solutions have explicit knowledge
of the dependencies that processes within a VM have
to in-kernel structure. Such dependencies are external-
ized by the container-based VMM in a kernel indepen-
dent manner and then internalized again when moving to
a container-based VMM operating on a different kernel
version [16].

For specific usage scenarios, either hypervisors or con-
tainers may be the only VMM technology that provides
the required feature set. For others, the fundamental
tradeoff given current VMM technology is one of effi-
ciency versus isolation. Figure 2 summarizes the state-
of-the-art in VMM technology along these two dimen-
sions. The x-axis counts how many of the three differ-
ent kinds of isolation are supported by a particular tech-

Figure 3: Container-based VMM Overview

nology. The y-axis is intended to be interpreted qual-
itatively rather than quantitatively; as mentioned, later
sections will focus on presenting quantative results. The
key observation is, to date, there is no VMM technology
that achieves the ideal of maximizing both efficiency and
isolation. We argue that for usage scenarios where ef-
ficiency trumps the need for full isolation, a container-
based solution like VServer hits the sweet spot within
this space. Conversely, for scenarios where full isolation
is required, a hypervisor-based VMM is best.

3 Container-based VMMs

This section provides an overview of container-based
systems, describes the general techniques used to achieve
isolation, and presents the mechanisms with which Linux
VServers implements these techniques.

3.1 Overview

A container-based VMM provides a shared, virtualized
OS image, including a unique root file system, a (safely
shared) set of system executables and libraries, and what-
ever resources the root adminstrator assigns to the VM
when it is created. Each VM can be booted and shut
down just like a regular operating system, and rebooted
in only seconds when necessary. To applications and the
user of a container-based system, the VM appears just
like a separate host. Figure 3 schematically depicts the
design.

As shown in the figure, there are three basic plat-
form groupings. The hosting platform consists essen-
tially of the shared OS image and a priviledged host VM
(VMhost). This is the VM that a system administrator
uses to manage other VMs. The virtual platform is the
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Figure 4: Comparison of Container and Hypervisor VMM Taxonomy

view of the system as seen by the guest VMs. Applica-
tions running in the guest VMs work just as they would
on a corresponding non-container-based OS image.

At this level, there is nearly no difference between a
container and hypervisor based system. In fact, at many
conceptual levels the two approaches are similar. How-
ever, they differ fundamentally in the techniques they use
to implement isolation between VMs. Figure 4 illustrates
this by presenting a taxonomic comparison of their se-
curity and resource isolation schemes. The third level
of both hierarchies represents the general techniques that
each VMM uses.

As shown in the figure, a container-based VMM ap-
proach to security isolation directly involves internal op-
erating system objects (PIDs, UIDs, Sys-V Shm and IPC,
Unix ptys, and so on). The basic techniques used to se-
curely use these objects involve: (1) separation of name
spaces (contexts), and (2) access controls (filters). The
former means that objects live in completely different
spaces (for example, per VM lists), do not have pointers
to objects in other spaces, and thus cannot get access to
objects outside of its name space. The latter means that
access to objects involve runtime checks by the VMM to
determine whether the VM has the appropriate permis-
sions. In contrast, for a hypervisor-based VMM, security
isolation is achieved by virtualizing as much of the hard-
ware as possible. Special treatment is needed for the x86
architecture, the details of which are beyond of the scope
of this paper and are treated elsewhere; a simplified view
of security isolation primarily involves controlling access
to physical memory and devices.

The techniques for resource isolation between the two
VMM systems are quite similar. Both need to multi-
plex physical resources. The latest generation of the
Xen hypervisor architecture focuses on multiplexing the
CPU. Control over all other physical resources is dele-
gated to one or more priviledged host VMs, which mul-

tiplex the hardware on behalf of the guest VMs. Inter-
estingly, when Xen’s host VM is based on Linux, the
resource controllers used to manage sharing of network
bandwidth and disk i/o among guest VMs are identical
to those used by Linux Vserver. The two systems simply
differ in how they map VMs to these resource controllers.

3.2 VServer Resource Isolation

This section describes in what way Linux Vserver im-
plements resource isolation. It is mostly an exercise of
leveraging existing resource management and account-
ing facilities already present in Linux. For both physical
and logical resources, VServer simply imposes limits on
how much of a resource a VM can consume.

3.2.1 CPU

Linux VServer implements CPU isolation by overlaying
a token bucket filter (TBF) on top of the standard O(1)
Linux CPU scheduler. Each VM has a token bucket that
accumulates tokens at a specified rate; every timer tick,
the VM that owns the running process is charged one
token. A VM that runs out of tokens has its processes re-
moved from the runqueue until its bucket accumulates a
minimum amount of tokens. Originally the VServer TBF
was used to put an upper bound on the amount of CPU
that any one VM could receive. However, it is possible
to express a range of isolation policies with this simple
mechanism. We have modified the TBF to provide fair
sharing and work-conserving CPU reservations.

The rate that tokens accumulate in a VM’s bucket de-
pends on whether the VM has a reservation or a share. A
VM with a reservation accumulates tokens at its reserved
rate: for example, a VM with a 10% reservation gets 100
tokens per second, since a token entitles it to run a pro-
cess for one millisecond. On PlanetLab, for example, the
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default share for a VM is actually a small reservation,
providing the VM with 32 tokens every second, or 3% of
the total capacity.

The main difference between reservations and shares
occurs when there are runnable processes but no VM has
enough tokens to run: in this case, VMs with shares are
given priority over VMs with reservations. First, if there
is a runnable VM with shares, tokens are given out fairly
to all VMs with shares (i.e., in proportion to the number
of shares each VM has) until one can run. If there are
no runnable VMs with shares, then tokens are given out
fairly to VMs with reservations. The end result is that the
CPU capacity is effectively partitioned between the two
classes of VMs: VMs with reservations get what they’ve
reserved, and VMs with shares split the unreserved ca-
pacity of the machine proportionally.

3.2.2 Network

The Hierarchical Token Bucket (htb) queuing discipline
of the Linux Traffic Control facility (tc) [10] is used to
provide bandwidth reservations and fair service among
VServers. For each VM, a token bucket is created with
a reserved rate and a share: the former indicates the
amount of outgoing bandwidth dedicated to that VM, and
the latter governs how the VM shares bandwidth beyond
its reservation. Packets sent by a VServer are tagged with
its context id in the kernel, and subsequently classified to
the VServer’s token bucket. The htb queuing discipline
then allows each VServer to send packets at the reserved
rate of its token bucket, and fairly distributes the excess
capacity to the VServers in proportion to their shares.
Therefore, a VM can be given a capped reservation (by
specifying a reservation but no share), “fair best effort”
service (by specifying a share with no reservation), or a
work-conserving reservation (by specifying both).

3.2.3 Disk and Memory

VServer provides the ability to associate disk quotas and
memory limits with VMs. Both limit the amount of phys-
ical resource that the VM can access and allocate. Note
that when a node attempts to scale up the number of
VMs, as is the case on PlanetLab [5], fixed memory allo-
cations may not be appropriate. In this case, one option
is to let VMs compete for memory, and use a watchdog
daemon to recover from overload cases—for example by
killing the VM using the most physical memory.

Disk I/O is managed in VServer using Linux’s stan-
dard CFQ (“completely fair queuing”) I/O scheduler.
The CFQ scheduler attempts to divide the bandwidth of

each block device fairly among the VMs performing I/O
to that device.

3.2.4 Logical Resources

VServer also limits how much logical resources a VM
may consume. The logical resources include:

• RSS: Number of pages the VM’s resident set can
consume (the number of virtual pages resident in
RAM).

• PROC: Number of processes that can be created
within a VM.

• OPENFD: Aggregate number of file descriptor that
can be opened by processes within a VM.

• MEMLOCK: Number of virtual memory pages that
may be locked into RAM using mlock() and mlock-
all() by processes within a VM.

• VM: Number of virtual memory pages available to
the processes within a VM (address space limit).

• LOCKS: Number of file systems locks a VM may
have.

• ANON: Number of anonymous memory pages a
VM may have.

• SHMEM: Number of pages that can be declared as
SYSV shared memory.

3.3 VServer Security Isolation

VServer makes a number of kernel modifications to en-
force security isolation.

3.3.1 Process Contexts

Processes are contextualize in order to hide all processes
outside a VM’s scope, and prohibit any unwanted inter-
action between a process inside a VM and a process be-
longing to another VM. This separation requires the ex-
tension of some existing kernel data structures in order
for them to become aware of contexts and to differenti-
ate between identical uids used by different VMs.

It also requires the definition of a ’default’ VM that is
used when the host system is booted, and to work around
the issues resulting from some false assumptions made
by some user-space tools (like pstree) that the ’init’ pro-
cess has to exist and have pid ’1’.

To simplify administration, processes belonging to the
host VM are contextualized as well. To allow for a global
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process view, VServer defines a special spectator VM
that can peek at all processes at once.

A side effect of this approach is that process migration
from one VM to another VM on the same host is trivially
achieved by changing its context identified.

3.3.2 Network Context

While Process Contexts is sufficient to isolate groups of
processes, a different kind of separation, or rather a lim-
itation, is required to confine processes to a subset of
available network addresses.

Several issues have to be considered when doing so;
for example, the fact that bindings to special addresses
like IPADDR ANY or the local host address have to be
handled in a very special way.

Currently, VServer does not make use of virtual net-
work devices (and maybe never will) to minimize the re-
sulting overhead. Therefore socket binding and packet
transmission have been adjusted.

3.3.3 The Chroot Barrier

One major problem of the chroot() system used in Linux
lies within the fact that this information is volatile, and
will be changed on the ’next’ chroot() Syscall.

One simple method to escape from a chroot-ed envi-
ronment is as follows: First, create or open a file and re-
tain the file-descriptor, then chroot into a subdirectory at
equal or lower level with regards to the file. This causes
the ’root’ to be moved ’down’ in the filesystem. Next, use
fchdir() on the file descriptor to escape from that ’new’
root. This will consequently escape from the ’old’ root
as well, as this was lost in the last chroot() Syscall.

VServer uses a special file attribute, known as the Ch-
root Barrier, on the parent directory of each VPS to pre-
vent unauthorized modification and escape from confine-
ment.

3.3.4 Upper Bound for Caps

Because the current Linux Capability system does not
implement the filesystem related portions of POSIX Ca-
pabilities which would make setuid and setgid executa-
bles secure, and because it is much safer to have a secure
upper bound for all processes within a context, an addi-
tional per-VM capability mask has been added to limit
all processes belonging to that context to this mask.

The meaning of the individual caps (bits) of the capa-
bility bound mask is exactly the same as with the permit-
ted capability set.

3.4 Filesystem Unification

One central objective of VServer is to reduce the overall
resource usage wherever possible. VServer implements
a simple disk space saving technique by using a simple
unification technique applied at the whole file level. The
basic approach is that files common to more than one
container-based VM, which are not very likely going to
change (e.g., like libraries and binaries from similar OS
distributions), can be hard linked on a shared filesystem.
This is possible because the guest VMs can safely share
filesystem objects (inodes). The technique reduces the
amount of disk space, inode caches, and even memory
mappings for shared libraries.

The only drawback is that without additional mea-
sures, a VM could deliberately or accidentally destroy or
modify such shared files, which in turn would harm/in-
terfere other VMs. The approach taken by VServer is to
mark the files as copy-on-write. When a VM attempts to
mutate a hard linked file with CoW attribute set, VServer
will give the VM a private copy of the file.

Such CoW hard linked files belonging to more than
one context are called ’unified’ and the process of find-
ing common files and preparing them in this way is
called Unification. The reason for doing this is re-
duced resource consumption, not simplified administra-
tion. While a typical Linux Server install will consume
about 500MB of disk space, 10 unified servers will only
need about 700MB and as a bonus use less memory for
caching.

4 System Efficiency

This section explores the performance and scalability of
container- and hypervisor-based virtualization. We re-
fer to the combination of performance and scale as the
efficiency of the system, since these metrics correspond
directly to how well the available physical resources are
exposed to fulfill a given workload.

The comparison shows that although performance op-
timizations and the inclusion of new features continues
with Xen3, the overhead required by acting as broker for
the virutal memory sub-system still introduces an over-
head of 45% for OS operations such as memory mapping
a file, and up to 60% for process execution. In terms
of absolute performance on server-type workloads, Xen3
lags an unvirtualized system by up to 70% for network
I/O while requiring comparable CPU time, and 50% for
disk intensive workloads. For workloads designed to
stress the entire system, such as SPEC WEB99, perfor-
mance again sufferes by as much as 70%. Yet, for all
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of these tests, VServer performance is comparable to an
unvirtualized Linux kernel.

All experiments are run on an HP DL360 Proliant
with dual 3.2 GHz Xeon processor, 4GB RAM, two
Broadcom NetXtreme GigE Ethernet controllers, and
two 160GB 7.2k RPM SATA-100 disks. The Xeon pro-
cessors each have a 2MB L2 cache. Due to reports [?]
indicating that hyper-threading actually degrades perfor-
mance for certain environments, we run all tests with
hyper-threading disabled. All systems are compiled for
both uni-processor and SMP architectures, and unless
otherwise noted, all experiments run within a single VM
provisioned with all available resources.

Linux and its derived systems have hundreds of sys-
tem configuration options, each of which can potentially
impact system behavior. We have taken the necessary
steps to normalize the effect of as many configuration
options as possible, by preserving homogenous setup
across systems, starting with the hardware, kernel config-
uration, filesystem partitioning, and networking settings.
The goal is to ensure that observed differences in perfor-
mance are a consequence of the software architectures
evaluated, rather than a particular set of configuration op-
tions. Appendix A describes the specific configurations
we have used in further detail.

The following systems share a common origin in the
2.6.12 Linux kernel, and because Xen3 and VServer are
currently distributed as patches to the Linux kernel, an
unmodified Linux kernel (Linux) will provide an unvir-
tualized reference to contrast the impact that hypervisor-
or container-based approaches have on system efficiency.

The Xen configuration consists of Xen 3.0.1-testing 1

as well as Xen 2.0.8. Both the host VM (dom0) and
guest VM (domU) are derived from the 2.6.12 Linux ker-
nel. Also, since Xen 3.0.1 allows guest VMs to leverage
multiple virtual CPUs, our tests also evaluate an SMP-
enabled guest.

The VServer configuration consists of VServer 2.0.1,
which is again a patch to an unmodified Linux 2.6.12
kernel. Our VServer Linux kernel (refered to as simply
VServer in the text) includes several additions that have
come as a result of VServer’s integration with Planet-
lab. As discussed earlier, these include the new fair share
CPU scheduler that preserves the existing O(1) sched-
uler, and enables CPU reservations for VMs; a CFQ-
based filter manages the disk resources; and a hierarchi-

1The pace of Xen development is so rapid, and stability so unpre-
dictable at each incremental change that we have settled on a single re-
lease known to be stable for our hardware and testing aparatus. We have
adjusted the configuration of the other systems to compensate where
appropriate for missing features, such as hardware offloading of TCP
operations

cal token bucket packet scheduler is used to ensure fair
sharing of network I/O.

4.1 Micro-Benchmarks

While micro-benchmarks are incomplete indicators of
system behavior for real workloads [6], they do offer an
opportunity to observe the fine-grained impact that dif-
ferent virtualization techniques have on primitive OS op-
erations. In particular, the OS subset of McVoy’s lm-
bench benchmark [12] version 3.0-a3 includes experi-
ments designed to target exactly these subsystems.

For all three systems, the majority of the tests perform
worse in the SMP kernel than the UP kernel. While the
specific magnitudes may be novel, the trend is not sur-
prising, since the overhead inherent to synchronization,
internal communication, and caching effects of SMP sys-
tems is well known. In particular, we see higher process
creation and context switch times, higher communication
latencies for pipes, UNIX domain and IP sockets, as well
as more than a 50% reduction of local socket bandwidth
in SMP kernels. For brevity, the following discussion
focuses on the overhead of virtualization using a unipro-
cessor kernel.

For the uniprocessor systems, our findings are consis-
tent with the original report of Barham et al [4] that Xen
incurs a penalty for virtualizing the virtual memory hard-
ware. While Xen3 has optimized page table update op-
erations in the guest kernels over Xen2, a 60% overhead
remains for common operations such as process execut-
ing and memory mapping large files. Table 2 shows re-
sults for the latency benchmarks, for which there is dis-
crepancy between Linux-UP, VServer-UP, Xen2-UP, and
Xen3-UP. The performance of the results not included
does not vary significantly; i.e., they are equal within the
margin of error.

The first three rows in Table 2 show the performance
of fork process, exec process, and sh process across the
systems. The performance of VServer-UP is always
within 3% of Linux-UP. Also of note, Xen3-UP perfor-
mance has improved over that of Xen2-UP due to opti-
mizations in the page table update code that batch pend-
ing transactions for a single call to the hypervisor. How-
ever, this still induces an overhead of 60% over Linux-
UP.

The next three rows show context switch overhead
between different numbers of processes with different
working set sizes. As explained by Barham [4], the 1µs
to 3µs overhead for these micro-benchmarks are due to
hypercalls from XenoLinux into the VMM to change the
page table base. In contrast, there is little overhead be-
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Config Linux-UP VServer-UP Xen2-UP Xen3-UP
fork process 103.70 105.20 302.70 249.70
exec process 365.10 367.40 812.30 695.00
sh process 1086.00 1095.70 2128.30 1735.10
ctx ( 2p/ 0K) 1.78 1.85 3.46 3.43
ctx (16p/16K) 2.52 2.63 3.94 3.85
ctx (16p/64K) 4.06 4.23 5.89 6.49
mmap (64MB) 588.00 585.00 804.00 874.00
mmap (256MB) 2341.00 2328.00 3162.00 3391.00
prot fault 0.58 0.55 0.87 0.86
page fault 1.54 1.54 2.17 2.27

Table 2: lmbench latency OS benchmarks for Uniprocessor kernels – times in µs

tween Linux-UP and VSever-UP.
The next two rows show mmap latencies for 64MB and

256MB files. The latencies clearly scale with respect to
to the size of the file, indicating that the Xen kernels incur
a 3.3µs overhead per megabyte, or nearly 33% additional
processing time compared to the other systems. This is
particularly relevant for servers or applications that use
mmap as a buffering technique or convenient access to
large data sets, such as [15].

The difference across these micro-benchmarks comes
directly from the Xen hypercalls needed to update the
guest’s page table. This is one of the most common op-
erations in a multi-user system. While, optimizations for
batching updates have occured in Xen3, this fundamental
overhead is still measurable.

4.2 System Benchmarks

We repeat a number of the single VM benchmarks that
have become familiar metrics for validation of the vir-
tualization techniques of Xen [4, ?]. They exercise the
whole system with a range of server-type workloads
to illustrate the absolute performance offered by Linux,
VServer, and Xen3.

Figure 5 includes tests run against Uniprossor and
SMP kernels for the three systems we are evaluating. In
particular, there are various multi-threaded applications
designed to create real-world, multi-component stresses
on a system, such as Iperf, OSDB-IR, a kernel com-
pile, and SPEC WEB99. In addition, we explore several
single-threaded applications such as a Dbench and Post-
mark to gain further insight into the overhead of Xen.

Since we are running one VM per VMM, each is pro-
visioned with all available memory, minus that required
by the hosting VMM. Each reported score is the median
of 5 or more trials. All resultes are normalized relative to
Linux-UP. The data demonstrate that IO-bound applica-

tions suffer within a Xen guest VM. However, there are
some interesting details.

The first test SPEC WEB99, an industry standard
benchmark for webserver platforms, is designed specif-
ically to be sensitive to small degrees of system over-
head. In particular, achieving a good score requires both
high throughput and bounded latency. When a client re-
quest gets stalled or badly delayed due to a slow disk
read or saturated network, the connection will be clas-
sified as non-conforming and will not contribute to the
overall score. Figure 5 shows the results of running
SPEC WEB99 on all platforms. Clearly, the scores of
Linux and VServer are very comparable for both UP and
SMP kernels. However, the achievable score of Xen3-
UP suffers a reduction of 64% over the non-virtualized
Linux-UP, and for the Xen3-SMP kernel, performance is
reduced only to 47% of Linux-SMP, still below the score
for the Linux and VServer UP kernels.

Figure 6: CPU utilization during Network I/O.

This degree of achievable performance in the Xen3
kernels is due to two factors: overhead in network I/O
and overhead in disk I/O. The SPEC WEB99 workload
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Figure 5: Relative performance of Linux, VServer, and XenU kernels. Measurements for various benchmarks are shown
for each system - ULK-UP is the uniprocessor kernel of Unmodified Linux. VServer-UP is the uniprocessor kernel of VServer.
Xen2-domU and Xen3-domU are uniprocessor kernels working in tandem with dom0 on a single CPU.

exercises all aspects of the system, CPU, network and
disk. Looking at these elements in isolation provides in-
sight into the SPEC WEB99 overhead.

A single-threaded, CPU-bound process demonstrates
that all platforms introduce no observable overhead.
When no other operation competes for CPU time, this
process receives all available system time. This validates
all the virtualizing techniques as able to achieve native
performance when there is no I/O.

Iperf is an established tool [2] for measuring band-
width with TCP or UDP traffic. We use it in this environ-
ment to exercise the networking subsystem of both virtu-
alizing systems. Figure 6 illustrates both the bandwidth
achieved across the nodes, and the percent of total CPU
utilization needed to achieve this amount. The wide bars
correspond to the total bandwidth, while the thin bars
represent all CPU not reported as idle by the system per-
formance monitors used during testing 2. Performance
here is worse than the Xen3-UP kernels by 70%. When
two CPUs are used in the SMP configuration, the overall
CPU utilization increases, but still maintains a 24-30%
reduction compared to the full throughput of Linux-UP.

While both versions of Xen tested did not support TCP
offloading, this feature was also disabled in the unmod-
ified Linux and VServer kernels. This certainly con-
tributes to the high degree of CPU time observed. A fur-
ther contributor is that all I/O interrupts are received by
the hosting VMM, and then delivered to the guest via a
virtual interrupt. Therefore, packets are effectively han-
dled by two operating systems, both on the incoming and

2For testing on Linux and VServer, sar of the sysstat package was
used, while for Xen we used the XenMon package

outgoing path.
This scenario of double-handling is similar for data

read from or writte to disk. Processes in the guest ini-
tiate I/O. The guest commits transactions to the virtual
disk device, after which the host (dom0) receives the data
before finally committing it to the physical device.

DBench and the compilation of a standard kernel high-
light the overhead derived from this I/O model. Here,
dbench is strictly I/O bound, so the longer the code path
is from client to disk the more delay will accumulate
over time. This is observed in the measurements. The
Linux-SMP and VServer-SMP kernels have additional
overhead due to dbench being a single threaded process
and the overhead inherent in SMP systems. Accordingly,
the Xen3-UP performance is modestly greater than that
of Xen3-SMP, but again, both have performance that is
at least 44% less than Linux-UP.

Next, a standard kernel compile uses multiple threads
and is both CPU intensive as well as exercising the
filesystem with many small file reads and creates. The
figure indicates that there is generally good performance
for Xen relative to Linux-UP, and overheads are no more
than 19% for Xen3-SMP and 9% for Xen3-UP. This sug-
gests that compilation is largely CPU bound, and the
overhead observed in dbench due to disk I/O delay, has
either modest impact on this test or is amortized over
time.

Postmark [8] is a single-threaded benchmark origi-
nally designed to stress filesystems. It allows a config-
urable number of files and directories to be created, and
followed by a number of random transactions on these
files. In particular, it generates many small transactions
like those experienced by a heavily loaded email or news
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server, from which it derives the name ’postmark’. For
the first time, Xen guests appear to perform better than
the other systems under these loads.

Each VMs use its dedicated partition. The improved
performance of Xen over Linux and VServer is due to the
fact that I/O committed to the virtual disk are batched
within the hosting VMM beforing being committed to
the physical disk. This batching is easily observable
with iostat. While the amount of data written by both
the guest and host is equal, there are 8x the number of
transactions issued by domU to the virtual device as is-
sued to the physical device by dom0. Thus, while overall
throughput is increased by batching transactions before
committing them to disk, there are unanswered questions
in regard to data and filesystem integrity for common or
database applications. The guest VM believes that ev-
ery transaction to the virtual device is committed perma-
nently, but this assumption is violated by the backend
driver.

Finally, the Open Source Database Benchmark
(OSDB) provides realistic load on a database server
from multiple clients. We report the Information Re-
trieval (IR) portion, which consists of many small trans-
actions all reading information from the database, a be-
havior consistent with current web applications. The per-
formance is quite comparable to that of Linux-UP and
VServer-UP, but we do see a 35% reduction of through-
put for Xen3-SMP relative to Linux-SMP. Not until we
look at the performance of this system at scale do the
dynamics of the system become clear.

4.3 Performance at Scale

This section evaluates how effectively the systems pro-
vide performance at scale, and in particular, running mul-
tiple instances of OSDB-IR. Using OSDB, we simulta-
neously demonstrate the security isolation available in
VServer that is unavailable in Linux, and the superior
performance available at scale in a container-based de-
sign.

Barham et al. point out that unmodified Linux can-
not run multiple instances of PostgreSQL due to con-
flicts in the SysV IPC namespace. However, the mech-
anisms present in VServer for security isolation contain
the SysV IPC namespace within each VServer context.
Consequently, a framework now exists to directly com-
pare the scalabilty of Xen to VServer.

The Information Retrieval component of the OSDB
package requires both high disk throughput and fair re-
source sharing. If disk I/O is dominated by any one VM,
then the others will not receive a comparable share, caus-

ing aggregate throughput to suffer. Figure 7 shows the
results of running 1, 2, 4, and 8 simultaneous instances
of the OSDB IR benchmark. Each VM runs an instance
of PostgreSQL to serve the OSDB test.

Figure 7: OSDB-IR at Scale. Performance across multiple
VMs

A perfect virtualization would partition the share of
resources perfectly among all active VMs, and maintain
the aggregate throughput as the number of active VMs
increased. However, for each additional VM, there is an
arithmetic increase in the number of processes and the
number of I/O requests. The diminishing trend observed
in Figure 7 for VServer-UP and VServer-SMP illustrates
the result. Since no virtualization is perfect, the intensity
of the workload adds increasingly more pressure to the
system and aggregate throughput diminishes.

Note that in Figure 7, the single VM case (1) for
VServer performs comparably to Xen3-UP, but after the
load approaches eight (8) simultanious VMs, the perfor-
mance disparity increases up to 30-38%. VServer-SMP
outperforms the Xen3-SMP equally well.

More surprising is the observed performance of Xen3-
SMP. Here, the aggregate throughput of the system in-
creases when two VMs are active, followed by the ex-
pected diminishing performance. This suggests an inher-
ent throttle in the Xen3-SMP system that prevents max-
imum utilization of the Xen system until multiple VMs
are active. As a result, full system capacity is not realized
until additional VMs are added to effectively ’fill in’ the
under-utilized resources. While the total performance in
this case is greater than of the single-VM, the improved
aggregate throughput is still 15% less than VServer-SMP
at the same scale.

In summary, the higher absolute performance of
VServer is primarily due to the lower overhead imposed
by the OS-virtualized approach. As a result, there is sim-
ply more CPU left to serve clients at increasing scale.
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Figure 8: Database performance with competing VMs

5 Resource Isolation

Both security and resource isolation are necessary to pro-
tect VMs from one another. Earlier sections have dis-
cussed the techniques used to address security isolation
in container-based OS virtualization. This section vali-
dates this approach as providing a comparable degree of
flexibility and precision with respect to resource isola-
tion.

While there are potentially many different ways to de-
fine the quality of resource isolation, we focus on two
aspects. First, the VMM should multiplex a device or
resource fairly between multiple users. No VM, no mat-
ter how aggressively it uses a resource should interfere
with any other VMs fair share. When the resource in
contention is the same for both VMs we call this single-
dimensional isolation. This also includes reservations or
guarantees of a certain amount. Second, one VM should
have limited ability to affect the activity of another us-
ing an unrelated resource. For instance, when running
a network-intensive file transfer at the same time an-
other VM runs a CPU intensive application, the overhead
should be bounded so that each still receives a fair share
or the resources available. Since the resources in con-
tention are now different, we call this multi-dimensional
isolation.

5.1 Single-dimensional Isolation

As noted earlier, traditional time-sharing UNIX systems
have a legacy of vulnerability to layer-below attacks. To
investigate whether Linux VServer is still susceptible to
single-dimensional resource interference, we elected to
perform a variation of the multi-OSDB database bench-
mark. Now, instead of all VMs running a database, one
will behave maliciously by performing a continuous dd

of a 6GB file to a separate partition on a disk common to
both VMs.

Figure 8 shows that OSDB on VServer suffers when
competing with an active dd. This is the result of dd writ-
ing to a file rather than to a raw device. Since the block
cache maintained by the kernel is both global and not ac-
counted to the originating VServer, the consequence is
that dd pollutes the block cache. Therefore, less system
memory is available for other processes or VMs, and the
performance of OSDB suffers.

This vulnerability is not present in Xen since the block
cache is maintained by each kernel instance. Moreover,
each virtual block device is mapped to a unique thread
in the driver VM, allowing it to be governed by existing
CFQ priorities. A second experiment writes to a raw de-
vice. Now, the block cache is not involved, and it is up
to the CFQ disk I/O scheduler to correctly schedule disk
activity based on the associated VServer for the process
performing the request. In this case, performance returns
to the expected level. This difference highlights one as-
pect of container-based OS virtualized systems that re-
main open to sharing. Other resource container imple-
mentations may address the issue of a global block cache
differently.

5.2 Resource Guarantees

To investigate both isolation across different resources
and resource guarantees, we use a combination of iperf
and hourglass, a synthetic real-time application useful for
investigating scheduling behavior at microsecond granu-
larity [18]. It is CPU-bound and involves no I/O. Since
TCP offloading is disabled for all systems, network I/O
activity should still interfere minimally with a CPU-
bound workload.

Again, we instantiate two opposing VMs. The first
acts as an iperf server, receiving connections from six
clients across two network interfaces. The second runs
hourglass as a CPU bound thread that records contiguous
periods of time that it is scheduled. Because hourglass
has no I/O, we may infer from the gaps in its time-line
that either the second VM is running or the VMM is run-
ning on behalf of the second VM. In the case of network
I/O, therefore, gaps refer to time spent by the driver VM
receiving packets in the interrupt handler or the second
VM communicating with the kernel.

Figure 9 displays the percentage of CPU time received
when competing with iperf. In each case, the percentage
is roughly 50%, or a fair share of available cpu time. The
3% missing from VServer is attributable to the higher
clock-rate of the system. Also, it is not surprising that
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Figure 9: Percent of CPU-time received with and without
a network workload

network throughput suffers when competing with a CPU
intensive process, given the values reported earlier for
the CPU load generated to achieve full capacity commu-
nication.

However, if the amount granted by a fair-share of the
system is not adequate for a particualr application, than
the ability to make guarantees through resource reser-
vation is also an option. The third column of figure 9
reports the amount of CPU time received by hourglass
when the CPU reservation is set to 60% of the system.
As expected, 60% is delivered in each case.

Finally, VServer can easily isolate VMs running fork-
bombs and other antisocial activity through memory
caps, process number caps, and other combinations of
resource limits.

6 Conclusion

Virtualization technology brings benefits to a wide va-
riety of usage scenarios. For some, like PlanetLab, the
fundamental tradeoff that VMMs make between isola-
tion and efficiency is of paramount importance. Experi-
ments indicate that container-based VMMs provide up to
2x the performance of hypervisor-based systems for cer-
tain workloads. A number of different VMM technolo-
gies exist, and the choice of VMM for a particular system
is clearly motivated by the set of virtualization features it
provides. However, we expect container-based VMMs to
compete strongly against hypervisor systems like Xen.
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A Normalized Configuration

A significant aspect of this effort is ensuring that the ex-
periments are fair. We report the configuration details of
the various subsystems.

A.1 Filesystem

The distribution populating all filesystems is the latest
release of Fedora Core 2, but the read and write perfor-
mance of platter-based hard drives naturally diminishes
across the extent of the device. To account for this varia-
tion, each virtual machine is allocated a dedicated LVM
partition, that is used solely by this VM, irrespective of
which VMM is currently active.

This configuration departs from a traditional VServer
system. As noted earlier, VServer can use a file-level
copy-on-write technique to replicate the base environ-
ment without unnecessary redundancy. However, the de-
cision to depart from this convention allows the tests to
reflect the differences of performance at a lower level
without introducing particular optimizations that aim to
increase the sharing available in the system.

A.2 Networking

The physical host has two ethernet ports, so both Linux
and VServer share two IPv4 IP addresses across all VMs.
As a consequence, the portspace on each IP address is
also shared between all VMs. The Xen configuration,
on the other hand, differs by virtue of running an au-
tonomous kernel in each VM which includes a dedicated
TCP/IP stack, and IP address. The Xen network runs in
bridged mode.

All kernels, boot with the following sysctl.conf:

Listing 1: Non-default kernel configuration
# All VMs
net.core.rmem_max=1048576
net.core.rmem_default=1048576
net.core.wmem_max=1048576
net.core.wmem_default=1048576
net.ipv4.tcp_max_syn_backlog=20480
net.ipv4.tcp_timestamps=0
net.ipv4.tcp_max_tw_buckets=2000000
net.ipv4.tcp_tw_recycle=1
net.ipv4.tcp_tw_reuse=1
net.core.netdev_max_backlog=20000
net.core.somaxconn=20480

In all test cases, these settings effect networking
buffers. They increase the system default and are neces-
sary to give optimial performance for http-based bench-

marks where numerous connections are created and de-
stroyed in less time than TIME WAIT . Moreover,
they specify buffer sizes that optimize throughput for the
local link between client and server.

A.3 Client Configuration

Three client machines are attached to each Ethernet port
on the system under test through a 1 Gbps Netgear
switch. Each client is a 1.3GHz AMD Duron PC equiped
with a AC9100 Gigabit Ethernet, and running RedHat
9.0.

A.4 System Clock

The XenoLinux system clock is 100Hz whereas VServer
and Linux use a 1000HZ clock. In future work this dif-
ference will be eliminated, as it is unclear how much
additional overhead is incurred from 10x the number of
context switches in Linux and VServer, or the benefit re-
alized by allowing longer quanta in Xen.
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