OpenVZ Forum


Home » Mailing lists » Devel » [PATCH 00/10] Task Containers(V11): Introduction
[PATCH 01/10] Task Containers(V11): Basic task container framework [message #15197 is a reply to message #15191] Fri, 20 July 2007 18:31 Go to previous messageGo to previous message
Paul Menage is currently offline  Paul Menage
Messages: 642
Registered: September 2006
Senior Member
This patch adds the main task containers framework - the container
filesystem, and the basic structures for tracking membership and
associating subsystem state objects to tasks.

Signed-off-by: Paul Menage <menage@google.com>
---

Documentation/containers.txt | 526 +++++++++++++++++
include/linux/container.h | 214 ++++++
include/linux/container_subsys.h | 10
include/linux/magic.h | 1
include/linux/sched.h | 34 +
init/Kconfig | 8
init/main.c | 3
kernel/Makefile | 1
kernel/container.c | 1199 +++++++++++++++++++++++++++++++++++++++
9 files changed, 1995 insertions(+), 1 deletion(-)

Index: container-2.6.22-rc6-mm1/Documentation/containers.txt
============================================================ =======
--- /dev/null
+++ container-2.6.22-rc6-mm1/Documentation/containers.txt
@@ -0,0 +1,526 @@
+ CONTAINERS
+ -------
+
+Written by Paul Menage <menage@google.com> based on Documentation/cpusets.txt
+
+Original copyright statements from cpusets.txt:
+Portions Copyright (C) 2004 BULL SA.
+Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+Modified by Paul Jackson <pj@sgi.com>
+Modified by Christoph Lameter <clameter@sgi.com>
+
+CONTENTS:
+=========
+
+1. Containers
+ 1.1 What are containers ?
+ 1.2 Why are containers needed ?
+ 1.3 How are containers implemented ?
+ 1.4 What does notify_on_release do ?
+ 1.5 How do I use containers ?
+2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Attaching processes
+3. Kernel API
+ 3.1 Overview
+ 3.2 Synchronization
+ 3.3 Subsystem API
+4. Questions
+
+1. Containers
+==========
+
+1.1 What are containers ?
+----------------------
+
+Containers provide a mechanism for aggregating/partitioning sets of
+tasks, and all their future children, into hierarchical groups with
+specialized behaviour.
+
+Definitions:
+
+A *container* associates a set of tasks with a set of parameters for one
+or more subsystems.
+
+A *subsystem* is a module that makes use of the task grouping
+facilities provided by containers to treat groups of tasks in
+particular ways. A subsystem is typically a "resource controller" that
+schedules a resource or applies per-container limits, but it may be
+anything that wants to act on a group of processes, e.g. a
+virtualization subsystem.
+
+A *hierarchy* is a set of containers arranged in a tree, such that
+every task in the system is in exactly one of the containers in the
+hierarchy, and a set of subsystems; each subsystem has system-specific
+state attached to each container in the hierarchy. Each hierarchy has
+an instance of the container virtual filesystem associated with it.
+
+At any one time there may be multiple active hierachies of task
+containers. Each hierarchy is a partition of all tasks in the system.
+
+User level code may create and destroy containers by name in an
+instance of the container virtual file system, specify and query to
+which container a task is assigned, and list the task pids assigned to
+a container. Those creations and assignments only affect the hierarchy
+associated with that instance of the container file system.
+
+On their own, the only use for containers is for simple job
+tracking. The intention is that other subsystems hook into the generic
+container support to provide new attributes for containers, such as
+accounting/limiting the resources which processes in a container can
+access. For example, cpusets (see Documentation/cpusets.txt) allows
+you to associate a set of CPUs and a set of memory nodes with the
+tasks in each container.
+
+1.2 Why are containers needed ?
+----------------------------
+
+There are multiple efforts to provide process aggregations in the
+Linux kernel, mainly for resource tracking purposes. Such efforts
+include cpusets, CKRM/ResGroups, UserBeanCounters, and virtual server
+namespaces. These all require the basic notion of a
+grouping/partitioning of processes, with newly forked processes ending
+in the same group (container) as their parent process.
+
+The kernel container patch provides the minimum essential kernel
+mechanisms required to efficiently implement such groups. It has
+minimal impact on the system fast paths, and provides hooks for
+specific subsystems such as cpusets to provide additional behaviour as
+desired.
+
+Multiple hierarchy support is provided to allow for situations where
+the division of tasks into containers is distinctly different for
+different subsystems - having parallel hierarchies allows each
+hierarchy to be a natural division of tasks, without having to handle
+complex combinations of tasks that would be present if several
+unrelated subsystems needed to be forced into the same tree of
+containers.
+
+At one extreme, each resource controller or subsystem could be in a
+separate hierarchy; at the other extreme, all subsystems
+would be attached to the same hierarchy.
+
+As an example of a scenario (originally proposed by vatsa@in.ibm.com)
+that can benefit from multiple hierarchies, consider a large
+university server with various users - students, professors, system
+tasks etc. The resource planning for this server could be along the
+following lines:
+
+ CPU : Top cpuset
+ / \
+ CPUSet1 CPUSet2
+ | |
+ (Profs) (Students)
+
+ In addition (system tasks) are attached to topcpuset (so
+ that they can run anywhere) with a limit of 20%
+
+ Memory : Professors (50%), students (30%), system (20%)
+
+ Disk : Prof (50%), students (30%), system (20%)
+
+ Network : WWW browsing (20%), Network File System (60%), others (20%)
+ / \
+ Prof (15%) students (5%)
+
+Browsers like firefox/lynx go into the WWW network class, while (k)nfsd go
+into NFS network class.
+
+At the same time firefox/lynx will share an appropriate CPU/Memory class
+depending on who launched it (prof/student).
+
+With the ability to classify tasks differently for different resources
+(by putting those resource subsystems in different hierarchies) then
+the admin can easily set up a script which receives exec notifications
+and depending on who is launching the browser he can
+
+ # echo browser_pid > /mnt/<restype>/<userclass>/tasks
+
+With only a single hierarchy, he now would potentially have to create
+a separate container for every browser launched and associate it with
+approp network and other resource class. This may lead to
+proliferation of such containers.
+
+Also lets say that the administrator would like to give enhanced network
+access temporarily to a student's browser (since it is night and the user
+wants to do online gaming :) OR give one of the students simulation
+apps enhanced CPU power,
+
+With ability to write pids directly to resource classes, its just a
+matter of :
+
+ # echo pid > /mnt/network/<new_class>/tasks
+ (after some time)
+ # echo pid > /mnt/network/<orig_class>/tasks
+
+Without this ability, he would have to split the container into
+multiple separate ones and then associate the new containers with the
+new resource classes.
+
+
+
+1.3 How are containers implemented ?
+---------------------------------
+
+Containers extends the kernel as follows:
+
+ - Each task in the system has a reference-counted pointer to a
+ css_group.
+
+ - A css_group contains a set of reference-counted pointers to
+ container_subsys_state objects, one for each container subsystem
+ registered in the system. There is no direct link from a task to
+ the container of which it's a member in each hierarchy, but this
+ can be determined by following pointers through the
+ container_subsys_state objects. This is because accessing the
+ subsystem state is something that's expected to happen frequently
+ and in performance-critical code, whereas operations that require a
+ task's actual container assignments (in particular, moving between
+ containers) are less common.
+
+ - A container hierarchy filesystem can be mounted for browsing and
+ manipulation from user space.
+
+ - You can list all the tasks (by pid) attached to any container.
+
+The implementation of containers requires a few, simple hooks
+into the rest of the kernel, none in performance critical paths:
+
+ - in init/main.c, to initialize the root containers and initial
+ css_group at system boot.
+
+ - in fork and exit, to attach and detach a task from its css_group.
+
+In addition a new file system, of type "container" may be mounted, to
+enable browsing and modifying the containers presently known to the
+kernel. When mounting a container hierarchy, you may specify a
+comma-separated list of subsystems to mount as the filesystem mount
+options. By default, mounting the container filesystem attempts to
+mount a hierarchy containing all registered subsystems.
+
+If an active hierarchy with exactly the same set of subsystems already
+exists, it will be reused for the new mount. If no existing hierarchy
+matches, and any of the requested subsystems are in use in an existing
+hierarchy, the mount will fail with -EBUSY. Otherwise, a new hierarchy
+is activated, associated with the requested subsystems.
+
+It's not currently possible to bind a new subsystem to an active
+container hierarchy, or to unbind a subsystem from an active container
+hierarchy. This may be possible in future, but is fraught with nasty
+error-recovery issues.
+
+When a container filesystem is unmounted, if there are any
+subcontainers created below the top-level container, that hierarchy
+will remain active even though unmounted; if there are no
+subcontainers then the hierarchy will be deactivated.
+
+No new system calls are added for containe
...

 
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Previous Topic: [Fwd: [2.6.22] negative time jump]
Next Topic: [PATCH] Add CTL_PROC back
Goto Forum:
  


Current Time: Sat Aug 30 12:56:55 GMT 2025

Total time taken to generate the page: 0.08142 seconds